Synthesis of Substituted Cyclopentenes by Reaction of Acrolein with $\beta, \beta, \gamma, \gamma$-Tetracyanoalkanones

V. P. Sheverdov, O. V. Ershov, O. E. Nasakin, A. N. Chernushkin, V. V. Bulkin, and V. A. Tafeenko
Ul'yanov Chuvash State University, Moskovskii pr. 15, Cheboksary, 428015 Russia
e-mail: ershov@chuvsu.ru

Received August 30, 2000

In 1957, Middleton et al. [1] were the first to effect tetracyanoethylation of ketones. $\beta, \beta, \gamma, \gamma$-Tetracyanoalkanones were obtained by mixing ketones with tetracyanoethylene in the presence of silver [1] or HCl [2]. Reactions of $\beta, \beta, \gamma, \gamma$-tetracyanoalkanones with some acids $\left(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{CH}_{3} \mathrm{COCOOH}\right)$ lead to formation of cyano-substituted pyrroles and pyridines [3-5]. However, the ketones studied in [3-5] had relatively simple structures: they contained no multiple bonds or bulky substituents. Analogous reactions with more
complex ketones which are related to natural and biologically active compounds were not studied.

We have found that $\beta, \beta, \gamma, \gamma$-tetracyanoalkanones Ia-If readily react with acrolein under mild conditions, affording cyanocyclopentene derivatives IIIaIIIf in high yields (Scheme 1). The proposed procedure seems to be convenient for modification of natural and biologically active compounds containing $\mathrm{CH}_{3} \mathrm{COCR}_{3}$ and $\mathrm{R}^{1} \mathrm{CH}_{2} \mathrm{COCR}_{3}^{2}$ fragments through transformation into cyano derivatives.

Scheme 1.

Table 1. Yields, melting points, IR spectra, and elemental analyses of compounds IVa-IVf

Comp. no.	Yield, \%	mp, ${ }^{\circ} \mathrm{C}$	IR spectrum,$v, \mathrm{~cm}^{-1}$	Found, \%			Formula	Calculated, \%		
				C	H	N		C	H	N
IVa	67	138-139	$\begin{array}{lll} 3410, & 3365, & 2265 \\ 1680, & 1665, & 1590 \end{array}$	63.91	4.93	19.87	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	63.82	5.00	19.85
IVb	65	192-193	$\begin{array}{lll} 3440, & 3375, & 2270 \\ 1680, & 1660, & 1580 \end{array}$	70.24	6.48	14.83	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$	70.19	6.43	14.88
IVe	69	194-195	$\begin{array}{lll} 3435, & 3365, & 2265, \\ 1675, & 1665, & 1585 \end{array}$	70.10	6.49	14.94	$\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}$	70.19	6.43	14.88
IVd	92	175-176	$\begin{array}{lll} 3415, & 3360, & 2275 \\ 1700, & 1685, & 1595 \end{array}$	65.68	6.18	15.52	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{2}$	65.59	6.12	15.46
IVe	78	171-172	$\begin{array}{lll} 3420, & 3370, & 2265 \\ 1710, & 1690, & 1575 \end{array}$	67.39	4.97	17.41	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{O}_{2}$	67.48	5.03	17.48
IVf	84	179-180	$\begin{array}{lll} 3365, & 3195, & 2265, \\ 1695, & 1650, & 1595 \end{array}$	67.35	6.47	16.49	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2}$	67.43	6.55	16.55

Table 2. ${ }^{1} \mathrm{H}$ NMR spectra of compounds IVa-IVf

Comp. no.	Chemical shifts δ, ppm
IVa	$\begin{aligned} & 9.56 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.94 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.16 \mathrm{~d}\left[1 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCO}\right], 4.13 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.68 \mathrm{~d}(1 \mathrm{H}, \\ & \left.\mathrm{CH}_{2} \mathrm{CO}\right), 3.65 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 3.51 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 1.8 \mathrm{~s},\left[6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right] \end{aligned}$
IVb	$\begin{aligned} & 9.58 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.99 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.47 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}), 6.24 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}), 4.18 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), \\ & 3.65 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.61 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 3.44 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 2.13 \mathrm{~m}\left[2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\right], \\ & 1.82 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.63 \mathrm{~m}\left[2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{C}\right], 1.48 \mathrm{~m}\left[2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.1 \mathrm{~s}\left[6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right] \end{aligned}$
IVe	$9.61 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.92 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.32 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}), 6.08 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}=\mathrm{CHCO}), 5.17 \mathrm{~d} . \mathrm{d}[1 \mathrm{H}$, $\left.\mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 4.12 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.66 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.60 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 3.52 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{CHCH}=\mathrm{CH}), 3.43 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 2.18 \mathrm{~m}\left[2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)\right], 1.75 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.68 \mathrm{~m}[2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.04 \mathrm{~s}\left[6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right]$
IVd	$9.58 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.99 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.14 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.61 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 3.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right)$, $3.38 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 2.08 \mathrm{~m}(3 \mathrm{H}, 3 \mathrm{CH}), 1.88 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.64 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right)$
IVe	$\begin{aligned} & 9.67 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.87 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.87 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}), 4.1 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.57 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], \\ & 3.5 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.41 \mathrm{~d}\left[1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}(\mathrm{CN})_{2}\right], 3.35 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHCO}), 2.67 \mathrm{~m}(2 \mathrm{H}, \mathrm{CH}), 1.61-1.78 \mathrm{~m}(6 \mathrm{H}, \\ & \left.3 \mathrm{CH}_{2}\right) \end{aligned}$
IVf	$9.5 \mathrm{~s}(1 \mathrm{H}, \mathrm{CHO}), 7.87 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 3.82 \mathrm{~d}[1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CHCH}], 3.71 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.53 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.5 \mathrm{~m}$ $\left[1 \mathrm{H}, \mathrm{CHCH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.18-1.58 \mathrm{~m}\left[5 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right], 1.48 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84 \mathrm{~d}\left[6 \mathrm{H}, \mathrm{CH}(\mathrm{CH})_{2}\right]$

A probable mechanism of the reaction (Scheme 1) includes initial addition of ketone Ia-If to acrolein with formation of intermediates IIa-IIf. The latter undergo intramolecular cyalization to 2 -iminocyclo-pentane-1-carbaldehydes IIIa-IIIf whose prototropic isomerization yields aminocyclopentenes IVa-IVf (Tables 1, 2).

Reaction of tetracyanoalkanones Ia-If with acrolein. Acrolein, 0.015 mol , was added dropwise to 0.01 mol of tetracyanoalkanone Ia-If in 20 ml of

2-propanol, and the mixture was stirred until it became homogeneous. After 1-2 days, crystallization occurred, and the precipitate was filtered off and washed with 2-propanol. An additional amount of the product can be isolated by dilution of the filtrate with 40 ml of water. The precipitates were combined and recrystallized from 2-propanol.

The progress of reactions and the purity of products were monitored by TLC on Silufol UV-254 plates. The IR spectra were recorded on a UR-20 instrument

Structure of the molecule of 3-amino-4-formyl-2-(4-methyl-2-oxo-3-pentenyl)-3-cyclopentene-1,1,2-tricarbonitrile (IVa).
in mineral oil. The ${ }^{1} \mathrm{H}$ NMR spectra were obtained on a Bruker AM-300 spectrometer (300 MHz) in DMSO- d_{6}. The X-ray diffraction data for a single crystal of compound IVa were obtained on a Siemens P3/PC four-circle diffractometer $\left(\mathrm{Mo} K_{\alpha}\right.$ irradiation,
graphite monochromator, $\theta / 2 \theta$ scanning). Unit cell parameters: $a=9.144(2), b=19.216(4), c=$ $8.365(2) \AA ; \alpha=90^{\circ}, \beta=93.43(2)^{\circ}, \gamma=90(2)^{\circ} ; V=$ $1467.2(6) \AA^{3} ; d_{\text {calc }}=1.273 \mathrm{~g} / \mathrm{cm}^{3}$; space group $P 2_{1} / c$. All calculations were performed on a computer using SHELXTL PLUS software.

REFERENCES

1. Middleton, W.I., Heckert, R.E., Little, E.L., and Krespan, C.G., J. Am. Chem. Soc., 1958, vol. 80, no. 11, pp. 2783-2788.
2. Nikolaev, E.G., Nasakin, O.E., Terent'ev, P.B., Khaskin, B.A., and Petrov, V.G., Zh. Org. Khim., 1984, vol. 20, no. 1, pp. 205-206.
3. Nasakin, O.E., Sheverdov, V.P., Moiseeva, I.V., Ershov, O.V., Chernushkin, A.N., and Tafeenko, V.A., Russ. J. Gen. Chem., 1999, vol. 69, no. 2, pp. 291-300.
4. Nasakin, O.E., Nikolaev, E.G., Terent'ev, P.B., Bulai, A.Kh., and Kalandriashvili, A.G., Khim. Geterotsikl. Soedin., 1985, no. 8, pp. 1027-1030.
5. Nasakin, O.E., Nikolaev, E.G., Terent'ev, P.B., Bulai, A.Kh., and Zakharov, V.Yu., Khim. Geterotsikl. Soedin., 1985, no. 9, pp. 1225-1228.
